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Iterative synthesis and screening strategies have recently been used to identify unique active 
molecules from complex synthetic combinatorial libraries. These techniques have many 
advantages over traditional screening methods, including the potential to screen large numbers 
of compounds to identify an active molecule while avoiding analytical separations and structural 
determination of unknown compounds. It is not clear, however, whether these techniques 
identify the most active molecular species in the mixtures and, if so, how often. Two key factors 
which may affect success of the selection process are the presence of many active compounds 
in the library with a range of activities and the chosen order of unrandomization. The 
importance of these factors has not been previously studied. Moreover, the impact of 
experimental errors in determination of subset activities or in randomization during library 
synthesis is not known. We describe here a model system based on oligonucleotide hybridization 
that addresses these questions using computer simulations. The results suggested that, within 
achievable experimental and library synthesis error, iterative deconvolution methods generally 
find either the best molecule or one with activity very close to the best. The presence of many 
active compounds in a library influenced the profile of subset activities, but did not preclude 
selection of a molecule with near optimal activity. 

Introduction 
Chemically synthesized combinatorial l ibraries pro

vide a new source of compounds for drug discovery.1 '2 

The development of au tomated solid phase synthesis 
techniques has enabled preparat ion of chemical libraries 
with extraordinary diversity and unprecedented num
bers of novel compounds. The composition of the 
libraries can be controlled to have features which make 
the molecules wi thin the l ibrary at t ract ive lead com
pounds or drug candidates . 

When a compound l ibrary is determined to have 
activity in a biological system, a "deconvolution" method 
m u s t be used to determine which molecule(s) in the 
l ibrary is (are) responsible for the activity. An iterative 
deconvolution s trategy which we refer to as SURF 
(synthetic unrandomization of randomized fragments)3 ,4 

can be used to identify a single compound from a 
mixture (Table 1). I terat ive deconvolution strategies 
have been used to identify peptides which bind t ightly 
to ant ibodies 5 - 1 0 or other protein targets9 '1 1 '1 2 and 
oligonucleotides with ant iviral activity.3 '4 

One issue is whe ther the i terat ive deconvolution 
method finds the most active molecule in the mixture . 
For example, among the molecules in complex combi
natorial libraries, there may be many t ha t have moder
a te activity and some with activity nearly equal to t ha t 
of the most active compound. These molecules with 
suboptimal activity could make selection of the most 
active compound difficult. To evaluate the importance 
of molecules with suboptimal activity on the outcome 
of SURF deconvolution, we performed calculations using 
a RNA hybridization model. To our knowledge, oligo
nucleotide hybridization is the only molecular binding 
interaction where calculations based on experimentally 
determined thermodynamic parameters 1 3 , 1 4 can ac-
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Table 1. Deconvolution Strategies for Chemical Libraries of all 
Tetramers Composed of the Five Monomers A-E 

SURF" position scanning4 

sequences molecules most active sequences molecules most active 
in subset per subset subset in subset per subset subset 

XNNN 125 ANNN XNNN 125 ANNN 
AXNN 25 ACNN NXNN 125 NCNN 
ACXN 5 ACEN NNXN 125 NNEN 
ACEX 1 ACED NNNX 125 NNND 

selected sequence: ACED selected sequence: ACED 

" SURF deconvolution begins with synthesis of a nonoverlapping 
set of mixtures by incorporating a unique monomer at a common 
position of each subset. The subsets are tested separately and 
the one with greatest activity is identified. A second set of 
compound mixtures is prepared with each subset containing the 
fixed monomer showing greatest activity from the previous round. 
In addition, another position is fixed with each of the unique 
monomers to give another set of subsets. The complexity of the 
mixture is reduced and the process is repeated until a unique 
molecule is identified. 6 Position scanning is a noniterative tech
nique which has been used with peptide libraries.9'17 At each 
position in the oligomer sequence, a series of mixtures is synthe
sized with a different monomer in the fixed position. Each of the 
mixtures is tested separately and the selected molecule is deduced 
by selecting the monomer from the most active mixture from each 
position set. In principal, only a single round of screening is 
required to define the most active molecule. 

curately predict association constants of very large 
numbers of molecules. Thus , it was possible to design 
a l ibrary wi th several hundred thousand different 
molecules and calculate the binding affinity for each 
molecule to the ta rge t molecule. The molecule wi th 
highest affinity (best binder) was determined and 
computer simulations of SURF deconvolution experi
men t s were used to ascertain whether molecules t h a t 
bind wi th less affinity (suboptimal binders) affect our 
ability to select the best binder. 

We used this model system to ask whe ther or not 
SURF deconvolution identified the t ightest binder when 
factors including the order of unrandomizat ion, experi-

0022-2623/95/1838-0344$09.00/0 © 1995 American Chemical Society 



Deconvolution of Combinatorial Libraries Journal of Medicinal Chemistry, 1995, Vol. 38, No. 2 345 

Table 2. Library Molecules with Highest Affinities0 

9-mer target 
5'-GUGUGGGCA-3' 

sequence 

GCCCACACA 
GCCCACACG 
GCCCGCACA 
GCCCACACU 
GCCCGCACG 
GCCCACGCG 
GCCCACGCA 
GCCCACACC 
GCCCGCGCA 
GCCCGCACU 
GCCCACGCU 
GCCCGCGCG 
GCCCGCACC 
CGCCCACAC 
GCCCACGCC 
UGCCCACAC 
GCCCGCGCU 
GGCCCACAC 
AGCCCACAC 
GCCCGCGCC 
+4 more at 

AG°37 

-17.0 
-17.0 
-16.5 
-16.5 
-16.5 
-16.5 
-16.5 
-16.1 
-16.0 
-16.0 
-16.0 
-16.0 
-15.6 
-15.6 
-15.6 
-15.5 
-15.5 
-15.5 
-15.5 
-15.1 
-15.1 

18-raer target 
5'-AUGUGUGGGCAACCUAGU-3' 

sequence 

GCCCACACA 
GCCCACACG 
GCCCACGCA 
GCCCGCACA 
GGUUGCCCA 
GCCCACACU 
GCCCACGCG 
GCCCGCACG 
GCCCGCGCA 
GGUUGCCCG 
GGGUUGCCC 
UGCCCACAC 
GCCCACACC 
GCCCACGCU 
GCCCGCACU 
GCCCGCGCG 
GGUUGCCCU 
AGGUUGCCC 
UGCCCACGC 
UGCCCGCAC 
+0 more at 

AG°37 

-17.4 
-17.0 
-16.9 
-16.9 
-16.7 
-16.5 
-16.5 
-16.5 
-16.4 
-16.4 
-16.2 
-16.2 
-16.1 
-16.0 
-16.0 
-16.0 
-15.9 
-15.9 
-15.7 
-15.7 
-15.7 

6-mer target 
5'-UGGGCA-3' 

sequence 

UAUGCCCAG 
UAUGCCCAA 
GAUGCCCAG 
GAUGCCCAA 
CAUGCCCAG 
CAUGCCCAA 
AUGCCCAGU 
AUGCCCAGG 
AUGCCCAGC 
AUGCCCAGA 
AUGCCCAAU 
AUGCCCAAG 
AUGCCCAAC 
AUGCCCAAA 
AAUGCCCAG 
AAUGCCCAA 
UUUGCCCAG 
CGCCCAAUA 
GCGCCCAGA 
AACGCCCAA 
+124 more at 

AG°37 

-10.5 
-10.5 
-10.5 
-10.5 
-10.5 
-10.5 
-10.5 
-10.5 
-10.5 
-10.5 
-10.5 
-10.5 
-10.5 
-10.5 
-10.5 
-10.5 
-10.4 
-10.4 
-10.4 
-10.4 
-10.4 

" The library contained all 262 144 possible UNA 9-mers. Hybridization affinities (kcal/mol) to each target were calculated as described 
in the Experimental Section. 

mental error in measurement of association constants, 
and biased synthesis errors were included. Secondly, 
we asked how well position scanning (Table 1) compared 
to iterative SURF. We found that in the presence of 
suboptimal binders and reasonable experimental errors 
iterative deconvolution usually selected either the best 
binder or a molecule that bound nearly as tightly as the 
best binder. In the presence of experimental error, 
position scanning was significantly less successful than 
iterative SURF. These results suggest that SURF 
deconvolution may be a powerful method for identifica
tion of lead compounds even when suboptimal binders 
are present in the mixtures. 

Results 
Effect of Suboptimal Binders on Deconvolution 

Profiles. We used RNA oligonucleotide hybridization 
to model a library of molecules with a spectrum of 
affinities. This system was chosen because relatively 
simple rules are available to calculate association 
constants (KJO for any pair of RNA oligomers with 
reasonable accuracy.13-15 Three targets of differing 
length were investigated, 5'-GUGUGGGCA-3', 5'-AU-
GUGUGGGCAACCUAGU-3', and 5'-UGGGCA-3'. The 
library in each case consisted of all possible 262 144 
RNA 9-mers. For all three targets, suboptimal binders 
included duplexes with mismatches or bulges. When 
the target length differed from the length of the library 
oligonucleotides, multiple duplex binding alignments 
were possible, so there was increased likelihood of 
several library molecules having similar affinities for 
the target. 

KAS for each molecule were determined as described 
in the Experimental Section and subset KAS were 
calculated using eq 1 (see Experimental Section). For 
the 9-mer target, the tightest binding molecule from the 
library bound with AG°37 = -17.0 kcal/mol (Table 2). 
Two sequences bound with this free energy and, inter
estingly, they bound 11-fold (1.5 kcal/mol) more tightly 
than the Watson—Crick complement of the target. This 
is a result of the stabilizing effect of 3' dangling ends16 

100000 

10000 

1000 

I 
100 

A Q° above best binder (kcal/mol) 

Figure 1. Number of molecules at each energy in a library 
of 262 144 RNA 9-mers that hybridize to GUGUGGGCA (A), 
AUGUGUGGGCAACCUAGU (•), or UGGGCA (T). For each 
target, energies are plotted relative to the tightest binding 
-9-mer in the library. For plotting, energies were combined in 
intervals of 0.5 kcal/mol. Therefore, the number of molecules 
at 0 kcal/mol above the best includes not only the best binder-
(s) but also all molecules with AG°37 < 0.5 kcal/mol above the 
best. 

and was confirmed experimentally with thermal dena-
turation measurements. The midpoint of the melting 
transition of the duplex formed by the target and the 
"best binder" (GCCCACACG) was 7° higher than that 
of the duplex formed by the target and its Watson-
Crick complement (UGCCCACAC). Fits of the melting 
curves suggested that AAG°37 is 1.7 ± 0.2 kcal/mol. 

For each target, the 20 library molecules that bound 
with highest affinity are listed in Table 2; energy 
distributions at higher energies are plotted in Figure 
1. Energy distributions for the 9-mer and 18-mer 
targets were very similar; less than 15 molecules 
(0.006%) bound with free energy within 1 kcal of the 
best binder; less than 3% of the molecules bound with 
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Table 3. Deconvolution of a Library of 49 Oligonucleotide 
9-mers Hybridizing to a 9-mer Target? 

KA(M-')whenX = 

round sequence A C G U 

library NNNNNNNNN 2.9 x 10' * 
1 NNNNXNNNN 6.5 x 10' 2.2 x 10' 2.9 x 10' 4.1 x 10s 

2 NNNNANXNN 1.8 x 108 5.2 x 105 8.0 x 107 8.6 x 105 

3 NNXNANANN 1.1 x 106 7.0 x 108 5.6 x 10< 5.6 x 106 

4 NNCXANANN 2.3 x 106 2.8 x 109 2.7 x 105 4.8 x 107 

5 NNCCAXANN 1.6 x 106 1.1 x 1010 1.7 x 106 1.9 x 108 

6 NNCCACAXN 6.4 x 108 4.0 x 10"> 6.4 x 108 1.9 x 109 

7 NXCCACACN 2.0 x 10' 1.6 x 10" 1.5 x 107 1.1 x 109 

8 NCCCACACX 2.4 x 10" 5.5 x 1010 2.4 x 10" 1.1 x 10" 
9 XCCCACACA 1.4 x 109 6.4 x 108 9.5 x 10" 5.5 x 108 

selected molecule: GCCCACACA 
AG°37 (kcal/mol) -17.0 

° Association constants for each subset hybridizing to GU-
GUGGGCA were calculated as described in the text. For each 
round, KA of the tightest binding subset is shown in bold. 
6 Although KA for the entire library is usually not measured, it 
can be calculated from the experimental KA values for the round 
1 subsets: /̂ .library = Unround uubsw /4 where the sum is over 
the four round 1 subset KAS. 

free energy within 8 kcal of the best binder. In contrast, 
for the 6-mer target, 2414 molecules (0.9%) bound with 
free energy within 1 kcal of the best binder and 63% of 
the molecules bound with free energy within 8 kcal of 
the best binder. For the 6-mer target, the large number 
of suboptimal binders with affinity near that of the best 
binder is due to the possibility of multiple alignments 
and the fact that nonpaired ends in the library oligo
nucleotide did not significantly affect binding free 
energy. 

Table 3 lists calculated subset K&s for SURF decon
volution of the 9-mer library with the length-matched 
target (GUGUGGGCA). The selected molecule, GC
CCACACA, had a KA of 9.5 x 1011 M"1 (Table 3) and 
was one of the two tightest binding compounds in the 
library. If this selected molecule was the only molecule 
in the library with affinity for the target, KA of the 
winning subset would increase by a factor equal to the 
decrease in subset complexity at each deconvolution 
step. In our examples with libraries built from four 
monomers, there were four subsets in each round, so in 
the absence of suboptimal binders, KA of the winning 
subset would increase 4-fold each round and losing 
subsets would not bind. This hypothetical situation is 
depicted by the solid symbols in Figure 2a. When 
suboptimal binders were included in the simulation 
(open symbols in Figure 2a), calculated affinities in
creased. The suboptimal binding factor (SBF, see eq 2 
of Experimental Section) is a measure of how much 
more tightly a subset bound than would be expected if 
the best binder were the only molecule in the subset 
with affinity for the target. In the example in Table 3 
and Figure 2, the SBF of the library was 8.0. Due to 
the presence of suboptimal binders, the library bound 
8.0-fold more tightly than would be expected if the 
selected molecule was the only molecule with affinity 
for the target. Although there were thousands of 
suboptimal binders in the library, a very small fraction 
of the 262 144 molecules accounted for most of the 
library activity. The two best binders contributed 25% 
to the library KA; the remaining 18 molecules listed in 
column 1 of Table 2 contributed an additional 50%. The 
100 tightest binders (0.04% of the molecules) contrib
uted 90% of the library affinity. 

10'2 f— 
A 

1 0 " 

10'° A 

109 • slope < 4 ;7 • ' 

* 10* */**-—slope-4 

0 1 2 3 4 5 6 7 8 9 

round # 

AG° (kcal/mol) 

Figure 2. Deconvolution of a library of 49 oligonucleotide 
9-mers hybridizing to a 9-mer target. Residues were unran-
domized in the order 5, 7, 3, 4, 6, 8, 2, 9, 1. (A) Calculated 
association constant for the tightest binding subset in each 
round: (A) suboptimal binders were included in calculation 
of the association constants; (•) association constants were 
calculated assuming only one molecule in the library, GC
CCACACA, binds with KA = 9-5 x 10" M"1. (B) The number 
of molecules at each energy vs energy for the entire library 
(solid bars) and the four subsets (hatched bars) in round 1. 

Figure 2b demonstrates division of the 49 molecules 
in the library into four subsets during round 1 of the 
deconvolution. Examination of the sequences in Table 
2 and Figure 2b reveals that the most active compounds 
were distributed into three subsets (A, C, G) in round 
1. No library sequences with U in position 5 bound with 
energy tighter than -13 .1 kcal/mol. As a consequence 
of distributing the most active compounds into three 
subsets, each of these three subsets showed substantial 
activity. The K& of the winning subset improved only 
2.2-fold from the library KA, instead of 4-fold as would 
be expected if the best binder were the only active 
molecule in the library. In subsequent rounds, similar 
separation of suboptimal binders into losing subsets 
resulted in observable activity of losing subsets and less 
than 4-fold improvement in KA between rounds. In each 
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Table 4. Deconvolution of a Library of 49 Oligonucleotide 
9-mers Hybridizing to a 6-mer Target" 

round 

library 
1 
2 
3 
4 
5 
6 
7 
8 
9 

sequence 

NNNfifNNNNN 
NNNNXNNNN 
NNNNCNXNN 
NNXNCNCNN 
NNCXCNCNN 
NNCGCXCNN 
NNCGCCCXN 
NXCGCCCAN 
NACGCCCAX 
XACGCCCAA 

selected molecule: 
AG°37 (kcal/mol) 

A 

4.7 x 104 

4.1 x 105 

4.4 x 105 

1.1 x 104 

3.6 x 103 

1.8 x 10' 
1.8 x 107 

2.1 x 107 

2.1 x 107 

^ A (M- 1 )whenX = 

C G 

1.3 x 106 b 

3.6 x 10s 8.6 x 104 

5.8 x 10s 3.0 x 105 

8.7 x 105 5.1 x 10B 

1.4 x 106 2.0 x 108 

8.0 x 10* 3.0 x 104 

1.1 x 106 1.1 x 107 

1.8 x 107 1.8 x 107 

1.3 x 107 2.1 x 107 

2.1 x 107 2.1 x 107 

AACGCCCAA 
-10.4 

U 

1.3 x 104 

1.5 x 106 

5.2 x 105 

2.1 x 104 

6.2 x 104 

2.2 x 106 

1.8 x 107 

1.5 x 107 

2.1 x 107 

" Association constants for each subset hybridizing to TJGGGCA 
were calculated as described in the text. For each round, KA of 
the tightest binding subset is shown in bold. b Although KA for 
the entire library is usually not measured, it can be calculated 
from the experimental KA values for the round 1 subsets, i?A,iibrary 
= Si ground l.subset j/4 where the sum is over the four round 1 
subset KAS. 

round, the subset containing the best binder bound with 
highest affinity. 

Many different orders were tested for unrandomiza-
tion of the 9-mer library with the 9-mer target. Details 
of the deconvolution profile depended slightly on the 
order of unrandomization. For example, KA of the 
winning subset in round 1 varied 3-fold depending on 
the order of unrandomization. The unrandomization 
order did not, however, affect which molecule was 
selected. Using 500 different orders of unrandomiza
tion, the tightest binding molecule was always selected. 

For the previously described library and the 18-mer 
target (AUGUGUGGGCAACCUAGU), the tightest bind
ing molecule was always selected despite the order of 
unrandomization. Deconvolution profiles for this target 
(data not shown) were very similar to those for the 
9-mer target. This was likely due to similarities be
tween the energy distributions for these two targets 
(Figure 1). 

A typical deconvolution profile for this 9-mer library 
hybridizing to the 6-mer target is shown in Table 4. The 
energy profile for this target (Figure 1) differed from 
that of the longer targets and results of deconvolution 
also differed. The average increase in K\ of the best 
subset between successive rounds was only 2.0 (com
pared to 3.3 for the 9-mer target). In rounds 9 and 7, 
when positions 1 and 2 were fixed, no base was 
preferred in these dangling positions and KA did not 
improve at all. The SBF was much larger for the 6-mer 
target than for the 9-mer target. Suboptimal binders 
in the library caused KA to be 1561 times tighter than 
if only the selected winner (AACGCCCAA) bound. 
Perhaps the most significant feature of this deconvolu
tion profile was that the selected molecule bound with 
a free energy of —10.4 kcal/mol. There were 16 mol
ecules in the library that bound slightly more tightly 
(by 0.1 kcal/mol) than this (Table 2). The origin of this 
result is revealed by examination of the library se
quences in Table 4 and the 16 sequences that bind with 
AG°37 = -10.5 kcal/mol (Table 2). In round 2, eight of 
these 16 molecules were in the A subset and eight in 
the selected C subset. In round 3, all eight were in the 
U subset, but that subset was not selected because 

suboptimal binders caused KA of the C subset to be 
greater than that of the U subset. No best binders were 
in the C subset, so selection of the C subset in round 
three necessitated selection of a suboptimal binder. 

The effect of the unrandomization order was exam
ined for this target. In the case of the 6-mer target, 
the energy of the selected molecule depended on the 
unrandomization order. For 500 different orders of 
randomization, energies of the selected molecule ranged 
from -10.5 to -9.6 kcal/mol; the average selected energy 
was -10.34 kcal/mol. 

Effect of Suboptimal Binders on Position Scan
ning. Position scanning9'17,18 (see Table 1) is a noniter-
ative deconvolution technique where a set of mixtures 
is synthesized for each position of the oligomer and a 
single position is fixed in each subset. The sequence of 
the most active compound is deduced by selecting the 
monomer from the most active subset at each position. 
Results of position scanning simulations for this library 
of 49 9-mers hybridizing to each of the three targets, 
UGGGCA, GUGUGGGCA, or AUGUGUGGGCAAC
CUAGU, are listed in lines 4 - 6 of Table 5. With the 
9-mer and 18-mer targets, position scanning, like itera
tive SURF, selected the best binder. In the case of the 
6-mer target, however, a molecule which bound 26 times 
weaker than the best binder was selected. The failure 
of position scanning to select the best binder with the 
6-mer target was a result of multiple binding alignments 
with similar energies. Position scanning was unable to 
select a single alignment. 

Effect of Assay Experimental Error on Distribu
tion of Selected Molecules. A significant effect of 
suboptimal binders in the library was that all four 
subsets bound the target with some affinity. Sometimes 
the difference in affinities between subsets was quite 
small. For example, in round 1 with the 9-mer target 
(Table 3), the G and C subsets bound, respectively, only 
2.3 or 2.9 times more weakly than the A subset; the U 
subset bound 158-fold more weakly. With experimental 
error in measurement of subset activities, the wrong 
subset can be selected. If the G or C subset was 
selected, then the final selected molecule was, respec
tively, GCCCGCACA (-16.5 kcal/mol) or CGCCCACAC 
(-15.6 kcal/mol) rather than the tightest binder, GC-
CCACACA (-17.0 kcal/mol). Thus, if a mistake was 
made, a suboptimal binder was selected. 

To evaluate the global effect of experimental error on 
SURF deconvolution, Monte Carlo simulations19 were 
performed with the assumption that the observed values 
of log KA were distributed normally about the true value 
of log KA with a standard deviation of log 2. This model 
reflected a situation where the experimental error was 
a factor of ±2. For each target, a single order of 
unrandomization was chosen and 500 simulations were 
performed with experimental error; energy distributions 
of selected molecules are plotted in Figure 3 and average 
selected energies are listed in Table 5. In the absence 
of experimental error, deconvolution against the 9-mer 
or 18-mer target always resulted in selection of the 
tightest binding molecule; however, introduction of 
experimental error sometimes resulted in selection of a 
suboptimal binder (Figure 3). Comparison of rows 7 -9 
to rows 1-3 in Table 5, reveals that experimental error 
increased the average selected energy slightly (0.24, 
0.38, or 0.69 kcal/mol for the 6-mer, 9-mer, or 18-mer 
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Table 5. Summary of Simulations for Deconvolution of a Library of 49 Oligonucleotide 9-mersa 

row 
number 

1 
2 
3 

4 
5 
6 

7 
8 
9 

10 
11 
12 

13 
14 
15 

16 
17 
18 

target 

6-mer 
9-mer 
18-mer 

6-mer 
9-mer 
18-mer 

6-mer 
9-mer 
18-mer 

6-mer 
9-mer 
18-mer 

9-mer, case a 
9-mer, case b 
9-mer, case c 

9-mer, case a 
9-mer, case b 
9-mer, case c 

average 
selected 
energy 

-10.34 
-17.00 
-17.40 

-8.50 
-17.00 
-17.40 

-10.10 
-16.62 
-16.71 

-7.74 
-15.23 
-13.00 

-17.00 
-17.00 
-15.60 

average 
selected % selected 

energy above molecules at 
best* best energy 

Iterative SURF 
0.16 21.8 
0.00 100.0 
0.00 100.0 

Position Scanning 
2.00 0.0 
0.00 100.0 
0.00 100.0 

Iterative SURF with Experimental 
0.40 2.6 
0.38 55.0 
0.69 19.8 

% selected 
molecules 

within 
1 kcal/mol 

of best 

100.0 
100.0 
100.0 

0.0 
100.0 
100.0 

Error0 

97.2 
90.3 
82.8 

Position Scanning with Experimental Error0 

2.76 0.0 
1.77 37.0 
4.40 11.7 

18.5 
71.0 
31.4 

Iterative SURF with Nonrandom Synthesis'1 

0.00 100.0 
0.00 100.0 
1.40 0.0 

100.0 
100.0 

0.0 

Iterative SURF with Experimental Error0 and Nonrandom Synthesis 
-16.60 
-16.31 
-15.82 

0.40 57.2 
0.69 42.8 
1.18 26.0 

86.4 
72.4 
40.8 

Freier et al. 

comments 

500 orders of 
unrandomization 
tested 

500 Monte Carlo simulations 
with unrandomization 
order 5, 7, 3, 4, 6, 8, 2, 9, 1 

500 Monte Carlo 
simulations 

unrandomization 
order 5, 7, 3, 4, 6, 8, 2, 9, 1 

250 Monte Carlo simulations 
with unrandomization 
order 5, 7, 3, 4, 6, 8, 2, 9, 1 

" Free energies (in kcal/mol) for each selected molecule were calculated as described in the text. Targets were 5'-UGGGCA-3' (6-mer), 
5'-GUGUGGGCA-3' (9-mer) or 5'-AUGUGUGGGCAACCUAGU-3' (18-mer). b Energies of the best binders are -10.5, -17.0, and -17.4 
kcal/mol for the 6-mer, 9-mer, and 18-mer targets, respectively. The energy of the best binder was subtracted from the average selected 
energy to obtain the average selected energy above the best. ° Methods for Monte Carlo simulations of unrandomization experiments 
with experimental errors are described in the text. d For the nonrandom syntheses, nucleotide composition at the random positions was 
as follows: case a, 21.4% C, 26.2% A, 26.2% G, 26.2% U; case b, 18.1% C, 27.3% A, 27.3% G, 27.3% U; case c, 10% C, 30% A, 30% G, 30% 
U. 

! 

AG° above best binder (kcal/mol) 

Figure 3. Percent of molecules selected at each energy during 
Monte Carlo simulations of deconvolution of a 9-mer RNA 
library hybridizing to GUGUGGGCA (open bars), UGGGCA 
(hatched bars), or AUGUGUGGGCAACCUAGU (solid bars). 
Fixed positions were unrandomized in the order 5, 7, 3, 4, 6, 
8, 2, 9, 1 and the experimental error was a factor of ±2. For 
each target, energies are plotted relative to the tightest binding 
9-mer in the library. For plotting, energies were combined in 
intervals of 0.5 kcal/mol. Therefore, the number of molecules 
at 0 kcal/mol above the best includes not only the best binder-
(s) but also all molecules with AG°37 < 0.5 kcal/mol above the 
best. 

targets, respectively) relative to the energy selected in 
the absence of error. 

With the 6-mer target and experimental error, sub-
optimal molecules were selected >97% of the time. Only 
3% of the selected molecules, however, bound less tightly 
than 1 kcal/mol above the free energy of the best binder 
(row 7 of Table 5). There was a high likelihood of 
experimental error leading to selection of a suboptimal 
binder, but because there were 2398 suboptimal binders 
within 1 kcal/mol of the best, the suboptimal binder 
selected was usually within 1 kcal/mol of the best. In 
contrast, with the 9-mer target and experimental error, 
a suboptimal molecule was selected only 45% of the time 
and 10% of the time the selected molecule bound less 
tightly than 1 kcal/mol above the best (row 8 of Table 
5). Although there was less likelihood of selecting a 
suboptimal binder, there were only 10 suboptimal 
binders within 1 kcal/mol of the best, so selection of a 
molecule within 1 kcal/mol of the best was less likely 
with the 9-mer target than with the 6-mer target. 

As discussed above, with the 6-mer target in the 
absence of experimental error, order of unrandomization 
affected the selected molecule, but the average selected 
energy was very close to the best. For example, in the 
absence of experimental error, unrandomization orders 
5, 7, 3, 4, 6, 8, 2, 9, 1 and 2, 6, 4, 8, 1, 9, 7, 3, 5 selected 
molecules with affinities of -10.4 and -9.6 kcal/mol, 
respectively. When experimental error was added, 
these two orders of unrandomization resulted in average 
selected energies of -10.10 and -10.08, respectively. 
The fact that an improvement was observed in the 
presence of experimental error was due to the large 
number of suboptimal binders for this target. 
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Figure 4. Percent of molecules selected at each energy during 
Monte Carlo simulations of deconvolution of a 9-mer RNA 
library hybridizing to GUGUGGGCA using iterative SURF 
with unrandomization order 5, 7, 3, 4, 6, 8, 2, 9,1 (open bars) 
or position scanning (filled bars). Experimental error was a 
factor of ±2. Energies are plotted relative to the tightest 
binding 9-mer in the library. For plotting, energies were 
combined in intervals of 0.5 kcal/mol. Therefore, the number 
of molecules at 0 kcal/mol above the best includes not only 
the best binders) but also all molecules with AG°37 < 0.5 kcal/ 
mol above the best. 

Effect of Assay Experimental Error on Position 
Scanning. Figure 4 compares Monte Carlo simulations 
of position scanning to those for iterative deconvolution. 
For the 9-mer target, experimental error had a more 
detrimental effect on position scanning than on iterative 
SURF. With iterative SURF, for the 9-mer target, all 
selected molecules bound with free energy within 3.0 
kcal of the best binder. In contrast, with position 
scanning, more than 20% of the selected molecules 
bound with free energy more than 4.5 kcal/mol above 
that of the best binder. With the 6-mer and 18-mer 
targets, differences between iterative SURF and position 
scanning were even greater (compare rows 10—12 to 
rows 7-9 in Table 5). Position scanning was least likely 
to be successful when several different registers of 
binding were possible. 

Effect of Nonrandom Synthesis on Deconvolu
tion Profile. All of the calculations presented above 
assumed equal concentrations of each molecule in each 
subset. For oligonucleotide synthesis, however, various 
strategies for synthesis of random sequences can result 
in unequal incorporation of the four monomers at each 
random position. In extreme cases, a single nucleotide 
may occur as seldom as 10% or as often as 50% at a 
single "random" position.20 To examine the effect of 
nonrandom synthesis on SURF deconvolution, simula
tions were performed with unequal representation of 
each nucleotide at each random position. Ratios of C 
to each of the other nucleotides were 0.9:1.1 (case a), 
0.8:1.2 (case b), or 0.5:1.5 (case c). C was chosen to be 
under-represented because selection of this C-rich oli
gonucleotide (GCCCACACA) was most affected by under-
representation of C. Only in case c was a suboptimal 
binder selected (lines 13—15 of Table 5). When experi
mental error was combined with nonrandom synthesis 
(lines 16-18 of Table 5), the distribution of selected 
molecules was affected only slightly, except in case c, 

where only 41% of the selected molecules bound with 
free energy within 1 kcal/mol of the best binder. 

Discussion 

Successful selection of the most active compound from 
a combinatorial library using the SURF deconvolution 
strategy requires that, in each round, the subset con
taining the most active compound is selected. This 
definitely happens if a single compound is active; in each 
round only one subset will be active and activity will 
improve as the concentration of active compound in
creases in subsequent rounds. In reality, however, 
several compounds in the library are likely to have some 
activity. If the most active suboptimal binders are 
together in one subset while the best binder is in 
another subset, the subset with the suboptimal binders 
may have the greatest activity and the most active 
single compound will not be selected at the end of 
deconvolution. 

To evaluate whether suboptimcal binders affect the 
outcome of SURF deconvolution, calculations were 
performed using RNA hybridization as the model sys
tem. This system was selected because oligonucleotide 
hybridization is the only molecular binding interaction 
where simple calculations can predict association con
stants with reasonable accuracy.13'21 Moreover, RNA 
hybridization is not simply a set of independent interac
tions between base pairs; the free energy of each base 
pair depends on its context.22,23 Thus, RNA hybridiza
tion is a reasonable model for macromolecular interac
tions. 

Three targets were evaluated and resulted in two 
types of energy profiles. With the 9-mer and 18-mer 
targets, there were one or two best binders and less than 
15 oligonucleotides bound with free energy near that of 
the best binder. In contrast, 16 sequences bound to the 
6-mer target at the lowest free energy and more than 
2400 oligonucleotides (1% of the total library) bound 
with free energy near that of the best binder (Figure 
1). The SBF's for our 9-mer library with the three 
different targets span the range of SBF's observed 
experimentally for oligonucleotide and peptide libraries 
(Table 6). 

Affinity distributions for libraries of antigenic deter
minants binding to immunoglobulins or odorants bind
ing to olfactory receptors have been modeled by Lancet 
et al.24 Our energy distributions (Figure 1) were 
qualitatively similar to those for these receptor libraries 
in that the number of library molecules at each affinity 
increased rapidly as affinity decreased. Parameters 
reported by Lancet et al.24 were used to calculate SBF 
values of 26 and 3 for the immunoglobulin and olfactory 
receptor library, respectively. These similarities be
tween affinity profiles for the receptors and those for 
our RNA oligomers suggest that our model of RNA 
hybridization, with its suboptimal binders, provides 
useful examples for evaluation of SURF. Thus, our 
observations on the effects of suboptimal binders may 
be applicable to many real systems. 

In Table 5, we compare the likelihood of selection of 
the best binder with selection of a "good binder", denned 
as a molecule that binds with free energy within 1 kcal/ 
mol of the best energy. Association constants of these 
good binders are within a factor of 5 of that of the best 
binder. Under some circumstances, suboptimal binders 
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Table 6. Reported Activities for Deconvolution of Oligomer Libraries 

target 

HIV4 

HSV3 

S. aureuss 

S. aureus9 

pAB-FMRF6 

pAB-pep36 

mAB-19B108 

mAB-125-10F39 

Ha-ras RNA3 

HlV-protease11 

Opioid receptor9 

Opioid receptor29 

18-mer target 
9-mer target 
6-mer target 

composition 

P = S DNA 
P = S DNA 
peptide 
peptide 

peptide 
peptide 
peptide 
peptide 

2'-0-methyl RNA 

peptide 
peptide 
peptide 

RNA 
RNA 
RNA 

no. of oligomer no. of 
monomers length fixed positions 

4 
4 

18 
19 

15 
16 
18 
19 

4 

22 
19 
19 

4 
4 
4 

Cellular Screens 
8 2 
8 1 
6 2 
6 2 

Antibody Binding 
4 0 
6 0 
6 2 
6 2 

subset 
complexity 

4 096 
16 384 

104 976 
130 321 

50 625 
16 777 216 

104 976 
130 321 

Nucleic Acid Binding (Experimental) 
9 1 

Protein Binding or Activity 
4 1 
6 2 
6 2 

65 536 

11132 
130 321 
130 321 

Nucleic Acid Binding (This Work) 
9 0 
9 0 
9 0 

262 144 
262 144 
262 144 

subset 
activity 

20 )M 
70 fM 
450 ,ug/mL 
1730 ^g/mL 

1400 /xg/uiL 
6500 fig/mL 
250 nU 
20 ^M 

10 /M 

4400 f*M 
3.452 ^M 
2.1 ^M 

0.020 fiM 
0.034 ^M 
7.9 ^M 

winner 
activity 

0.3 ^M 
0.4/iM 
3.4 ,«g/mL 
11 fig/mL 

0.5 /<g/mL 
0.08 fig/mh 
0.03 ^M 
0.004 ^M 

0.01 [M 

XA/iU 
0.028 /M 
0.005 fM 

5.5 x 10-7/iU 
1.1 x 1 0 " V M 
0.047 fM 

SBF 

61 
94 

793 
829 

18 
206 

13 
26 

66 

3.5 
1057 
310 

7.1 
8.0 

1561 

" The suboptimal binding factors (SBF) were calculated for the deconvolutions of oligomer libraries reported in the recent literature 
and for the theoretical deconvolutions described in this work. This table lists the assay used in the deconvolution experiment (target) 
and the description of each library, including the composition, the number of monomers, the length of the oligomer, and the number of 
fixed positions in the initial round of deconvolution. The number of unique molecules in each initial subset (complexity) is N1'1^ where 
N is the number of monomers, L is the oligomer length and F is the number of fixed positions. The activity of the most active subset in 
the initial round (subset activity), the activity of the final compound (winner activity), and the complexity were used to calculate the SBF 
of the most active initial round subset (see eq 2 of the Experimental Section). 

significantly reduced the likelihood of selecting the best 
binder but had much less effect on the likelihood of 
selecting a good binder. 

Suboptimal binders had very little effect on which 
molecule was selected by iterative SURF. For the 9-mer 
and 18-mer targets, the best binder was always selected. 
For the 6-mer target with its high number of suboptimal 
binders, some orders of unrandomization resulted in 
selection of a suboptimal binder. In all cases, however, 
the selected molecule bound within 1 kcal/mol of the free 
energy of the best binder. Suboptimal binders resulted 
in detectable binding of losing subsets, sometimes only 
2-fold weaker than the winning subset. Thus subopti
mal binders coupled with experimental error reduced 
the frequency with which the best binder was selected. 
Good binders, however, were still selected more than 
80% of the time. 

Position scanning was less successful. When experi
mental error was considered, position scanning selected 
a good binder as little as 18% of the time for the 6-mer 
target (compared to 97% with iterative SURF) and as 
often as 71% of the time for the 9-mer target (compared 
to 90% for iterative SURF). Position scanning was 
particularly unsuccessful when multiple alignments 
bound with similar energies, as was the case with the 
6-mer target. With iterative SURF, selection of a single 
base in round 1 usually determined alignment of the 
final selected winner. Position scanning, on the other 
hand, often selected a different alignment at each 
position, resulting in a selected sequence with very poor 
binding. 

We were particularly concerned about effects of 
synthesis errors which may result in unequal incorpora
tion of monomers and nonrandom subsets. The three 
cases considered roughly reflect the base composition 
ratios we observed using our best procedures for random 
synthesis (case a), equimolar amidite mixtures (case b), 

or in situ mixing of amidites by an automated synthe
sizer (case c).20 When nonrandom synthesis was in
cluded and experimental error considered, good binders 
were selected more than 70% of the time except with 
the most asymmetric synthesis. In our worst case, C 
occurred less than half as often as expected and a good 
binder was selected less than 50% of the time. Hence, 
a slight error in synthesis did not destroy the effective
ness of SURF, yet a very asymmetric synthesis had a 
severe effect. 

Although suboptimal binders did not have a large 
effect on the ability of SURF deconvolution to select a 
good binder, they did affect the deconvolution profile. 
Suboptimal binders resulted in activity of more than one 
subset in each round, in less than 4-fold improvement 
in activity between rounds, and in values of SBF greater 
than 1. There were two practical consequences of a SBF 
value greater than 1. Firstly, activity of the best subset 
in round 1 was greater than would be expected if only 
a single molecule was active. This may be an advantage 
experimentally as it might make it easier to detect 
active subsets and more complex libraries could be 
studied. Secondly, between round 1 and the final round, 
binding did not improve as much as would be expected 
if only a single molecule was active. This has practical 
implications in the use SURF for drug discovery, where 
it must be decided whether it is worth the effort to 
deconvolute a library after an initial activity is identi
fied. Knowledge of the SBF would allow extrapolation 
from activity in round 1 to activity of the final selected 
winner. If the projected activity is unacceptably low for 
use as a lead compound in drug development, the library 
can be abandoned and the effort of several rounds of 
synthesis and screening eliminated. 

Unfortunately, the actual value of SBF cannot be 
known until deconvolution is completed. Table 6, 
however, provides experimental examples from which 
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t he range of SBF can be es t imated. In addition, the 
deconvolution profile dur ing t h e early rounds can 
provide clues for es t imat ion of SBF. As demonst ra ted 
above for the example in Table 3 and Figure 2, increased 
values of SBF were associated wi th less t h a n 4-fold 
improvement in KA between successive rounds and with 
subs tan t ia l activity in losing subsets . 

Finally, two impor tan t factors have been ignored in 
our modeling. We assumed no interact ion between 
molecules within the l ibrary and we assumed t h a t two 
molecules in the l ibrary cannot s imultaneously bind to 
a single target molecule. A consequence of these factors 
is t h a t the activity of one compound could be affected 
by other compounds in t h e l ibrary.2 5 I n principle, our 
model of nucleic acid hybridization could be extended 
to include such considerations al though the calculations 
may be prohibitively large. Exper iments can also be 
designed to evaluate t h e importance of these factors. 
Despite these potential problems, effective identification 
of active compounds from mixtures is well-known in the 
area of na tu ra l product screening26 and is demonstrated 
by the examples in Table 6. In addition, qual i tat ive 
similari t ies between experimental and calculated SBF 
values (Table 6) suggest t h a t our model may reasonably 
mimic experimental deconvolution. 

In summary , we have modeled SURF deconvolution 
using two types of energy profiles, one with many fewer 
suboptimal binders t h a n the other. In both cases, 
suboptimal binders had only a limited effect on the 
energy of the molecule selected by i terat ive SURF and 
t h a t effect was greates t when errors in synthesis or 
activity measuremen t s were considered. RNA hybrid
ization provided a useful model for l ibrary binding and 
allowed insight into i terat ive deconvolution methods of 
d rug discovery. 

E x p e r i m e n t a l S e c t i o n 

Calculation of Free Energies for Library Sequence To 
Target RNA. The free energy of the intermolecular complex 
between each possible library sequence and the specific target 
was calculated using the thermodynamic method MFOLD, 
described by Zuker and co-workers.16,27'28 The set of free 
energy values used were those given by Jaeger et al.16 The 
standard MFOLD program calculates the free energy for 
unimolecular folding of RNA. Therefore, library and target 
sequences were connected and modification of the program 
allowed us to obtain the free energy of the most stable 
bimolecular interaction from the intramolecular complex. For 
example, in the case of the 9-mer target (5'-GUGUGGGCA-
3') and the 9-mer library, 49 molecules of the sequence 
5'-GUGUGGGCAXXXNNNNNNNNN-3' were folded where 
NNNNNNNNN was each of the sequences in the library. The 
program interpreted XXX as "unknown" bases and did not 
allow pairing of these residues. This connection between 
target and library sequences allowed calculation of the most 
stable interaction between target and library sequences, 
forcing the XXX into a hairpin loop. 

The following modifications were made to the standard 
MFOLD method. 

(1) All hairpin loop contributions were set to +3.4 kcal to 
represent the helix initiation energy between the target and 
library sequences.13 The only hairpin loop structure allowed 
was one including the connecting XXX sequence in its loop. 
This structure represents an intermolecular interaction. All 
other possible hairpin structures represent an intramolecular 
interaction. If an intramolecular interaction was observed in 
the optimal folding, the respective molecule was refolded while 
inhibiting the particular intramolecular interaction. 

(2) The standard free energy contributions for the first 
mismatch in a hairpin loop were modified to allow for calcula

tion of the correct dangling end contribution if one of the two 
nucleotides of the mismatch was X. If both nucleotides of the 
mismatch were not X, then they were treated as a terminal 
mismatch. The association constant for each intermolecular 
complex was calculated by the formula KA = exp(-AG°37)/RT, 
were AG is the minimal free energy, R is the gas constant 
(0.001987 kcal/mol/K), and T is temperature (310.15 K). 

Apparent association constants for each subset 
(&Mubset) were calculated from the association constants of 
each molecule in the subset: 

^A,subset = 2j>^A,i d ) 

where the sum is over all the molecules in the subset, ft is the 
fraction of that subset that is molecule i, and KAJ is the 
association constant for molecule i binding to target RNA. If 
all molecules were equally represented, then ft = UN where 
N is the number of molecules in this subset. Simultaneous 
binding of more than one oligonucleotide to the target and 
interactions between oligonucleotides in the library were not 
allowed. 

SBF (suboptimal binding factor) was defined as the appar
ent number of winning molecules in a subset: 

(no. of different molecules in this subset) 

(KA of final winner)/(KA of this round) 

The numerator in eq 2 is equal to the improvement in KA 
between this round and the final round, calculated under the 
assumption that no suboptimal binders exist in the library. 
The denominator is equal to the improvement in KA obtained 
when suboptimal binders are included in the calculation. SBF 
is, therefore, a measure of how much tighter a subset binds 
than would be expected if the best binder was the only 
molecule in the subset with affinity for the target. 

Monte Carlo Simulations of SURF. Effects of experi
mental error were simulated by assuming that observed values 
of log KA were distributed normally. Observed KA values for 
each subset were generated using standard Monte Carlo 
techniques. The subset with the largest observed KA was 
selected as the "winning subset". Calculations were continued 
for successive rounds until a single molecule was selected. 

Simulations of SURF with Biased Synthesis. SURF 
deconvolution of nonrandom libraries was performed as de
scribed above except that ft in eq 1 was calculated for each 
molecule in the library by assuming fixed but nonequal 
probabilities of each nucleotide at all "random" positions. 
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